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The discrete adjoint of a reconstruction-based unstructured finite volume formulation for the Euler equations is

derived and implemented. Thematrix-vector products required to solve the adjoint equations are computed on-the-

fly by means of an efficient two-pass assembly. The adjoint equations are solved with the same solution scheme

adopted for the flow equations. The scheme is modified to efficiently account for the simultaneous solution of several

adjoint equations. The implementation is demonstrated on wing and wing–body configurations.

Nomenclature

A = inviscid flux Jacobian
D = matrix of control volumes
DM = diagonal of the matrix
E = number of edges in the mesh
et = total specific energy
F = inviscid flux
G = gradients vector
H = vector of numerical fluxes
J = functional
LM = strictly lower part of the matrix
M = linear system matrix
N = number of nodes in the mesh
n = normal vector
PM = preconditioner
p = pressure
R = residuals vector
r = residual
U = conservative variables vector
UL, UR = vectors of left and right states
UM = strictly upper part of the matrix
u = conservative variables
V = control volume
v = primitive variables
w = velocity
� = parameter
� = ratio of specific heats, � � 1:4
� = angle of attack
�J = adjoint variables vector
� = density
� = slope limiter
� = numerical flux

Subscripts

bc = boundary condition
i, j, k = node number
w = wall
^ = linear reconstruction
� = approximation
1 = freestream

I. Introduction

G RADIENT-BASED aerodynamic shape optimization often
involves a large number of design variables and a limited

number of functionals (e.g., lift, drag, or pitching moment), the
evaluation of which requires expensive numerical solution
procedures. Therefore, to perform the optimization at reasonable
cost, it is crucial to compute the gradient efficiently.

Given the large number of design variables, methods that compute
the gradient at a cost proportional to this number (e.g., finite
differences, complex variables, or linearized approaches) are clearly
inefficient. The adjointmethod computes the gradient at an effort that
is independent of the number of design variables and proportional to
the number of aerodynamic functionals [1]. Thus, for aerodynamic
shape optimization problems, the method becomes very attractive.

The discrete adjoint approach is widespread [2–8]. It consists of
developing the adjoint on top of the discretized flow equations. In
practice, the code must be differentiated to derive the Jacobians. The
latter have to be transposed andmultiplied by vectors. Preferably, for
memory reasons, the matrix-vector products should be performed
on-the-fly, avoiding matrix storage. These operations are not easily
hand-coded, especially not in the case of an unstructured finite
volume solver. Among several difficulties, the transposition is a
major one because it inverts the operations in the differentiated code
in a counterintuitive way.

Some researchers proposed automatic differentiation (AD) as an
alternative to hand-coding [2,4,6]. AD tools relieve the developer of
the aforementioned difficulties. However, this occurs at the price of a
lower control on the code. The risk of generating inefficient code is
present, in terms of both memory and execution time. In contrast, the
more demanding hand-coding approach allows the developer to
exploit his/her knowledge of the implementation to the maximum
extent; thus, he/she can generate very efficient adjoint code [5,7,8].

The solution process for the adjoint equations also poses some
difficulties. The linearity of the adjoint equations suggests the use of
a linear system solver. However, the poor diagonal dominance of the
matrix makes it unlikely for the procedure to succeed. A robust
solutionmethod is obtained by simply treating the adjoint problem as
a nonlinear one and using the same solution procedure as for the flow
equations [4,5].
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The present work is aimed at developing an aerodynamic shape
optimization framework, which includes an unstructured Euler
solver. A 2D version of the framework was completed and
demonstrated [9]. There, several optimization test cases involving
transonic and supersonic flows were successfully addressed. Here,
the 3D flow and adjoint solvers are presented, which are, in part, the
extension of the 2D solvers described previously [9].

The adjoint presented here is hand-coded and is efficiently
assembled by means of a two-pass construction. The assembly is
matrix-free and does not require any data structure in addition to that
already available from the flow solver. Some simplifying
approximations in the differentiation were incorporated in the
implementation to limit the amount of differentiated code required.
Several parts of the differentiated code are already available from the
implicit scheme of the flow solver. These approximations were
introduced only after numerical experiments have shown that the
approximate code is as effective as the exactly differentiated code in
terms of optimization results [9].

The adjoint equations are solved with an implicit scheme that uses
a symmetric Gauss–Seidel solution procedure to solve the linear
system of equations arising at each time step. Because shape
optimization often requires some constraints to be enforced on the
aerodynamic functionals, it is required to solvemore than one adjoint
equation. The equations have the same Jacobian matrix in common.
For this reason, it appeared convenient tomodify the solutionmethod
to efficiently solvemultiple adjoint equations simultaneously, saving
time on the computation of the expensive matrix elements. The
benefit obtained by the simultaneous solution varies according to the
type of storage adopted for the solution of the linear system. In fact,
the symmetric Gauss–Seidel preconditioning procedure can also be
performed without storing the matrix elements (i.e., matrix-free
preconditioning).

The implementation is demonstrated on two configurations: the
ONERA-M6 wing and the DLR-F6 wing–body.

II. Finite Volume Formulation

The integral form of the Euler equations written for a volume V
contained in a domain � reads

d

dt

Z
V

u d��
I
@V

F�u� � n d�� 0 (1)

where the conservative variables and the inviscid flux are defined,
respectively, as

u �
�
�w
�et

2
4

3
5; F�u� �

�wT

�wwT � pI
�p� �et�wT

2
4

3
5 (2)

The perfect-gas equation p� �� � 1���et � w � w=2� provides
closure of the system. Equation (1) is discretized using a finite
volume method on unstructured median-dual meshes. The median-
dual mesh is obtained by processing the original mesh [10,11]. Each
element of the latter is divided into a number of parts that are equal to
the number of its vertices. Specifically, the element is divided by
surfaces that are constructed by the union of the lines connecting the
element’s center of gravity to its edge midpoints and to the centers of
its faces. Each part is then added to the corresponding node to create,
once all the elements that share the node are visited, a control volume
around the node itself.

For the ith control volume, the discretization of Eq. (1) reads

Vi
dui
dt
�
X
j�1;Ni

��ûi; ûj;nij� ��bc�ui;ni� � 0 (3)

where Ni is the number of distance-1 neighbors of node i; the
numerical fluxes� and�bc replace the integrated inviscid flux;nij is
the integrated normal along the edge that connects the nodes i and j,
for example,

n ij �
Z
@Vij

n d�

and ni indicates the integrated normal for the boundary node i.
The edges intersect the interfaces between neighboring control

volumes of the median-dual mesh. The intersections are located
exactly at the midpoint of each edge. An edge-based data structure is
used to loop on the edges of the mesh to collect the numerical fluxes.

As the hat on the conservative variables in Eq. (3) suggests, the
fluxes are not evaluated with the averaged variables. They are
evaluated with the variables obtained by a MUSCL-like
reconstruction procedure [10], which aims at achieving second-
order accuracy. The procedure is applied to the primitive variables,
which are reconstructed on each edge midpoint. Across the edge ij,
the reconstruction reads

v̂ i � vi �
�i
2
rvTi �xij; v̂j � vj �

�j
2
rvTj�xij (4)

where �xij represents the distance between the coordinates of the
two nodes, � is the slope limiter of Venkatakrishnan [12], and rv is
the gradient of the variable. The latter may be computed using a
Green–Gauss or a least-squares formulation [10].

The numerical flux � in Eq. (3) is evaluated using Roe’s
approximate Riemann solver [13]

�ij ���ui;uj;nij�

� 1
2
	F�ui� � F�uj�
 � nij � 1

2

��A�urij;nij
����uj � ui� (5)

which uses the Roe averages ur to compute the absolute value of the
inviscid flux Jacobian A� d�F � n�=du. The numerical flux �bc in
Eq. (3), which is obviously present only when the node i is lying on
the boundary, depends on whether the boundary type is external,
wall, or symmetry. In the case of an external boundary, flux vector
splitting [14] is used, which evaluates the numerical flux as

� bc
i ��1�ui;ni� �A��ui;ni�u1 �A��ui;ni�ui (6)

withA� � �A� jAj�=2 andA� � �A � jAj�=2 being the plus and
the minus splitting of the flux Jacobian, respectively. For a wall
boundary, the vanishing of the normal velocity, w � n� 0, is
enforced in the normal projection of the inviscid flux. Therefore, one
has

� bc
i ��w�ui;ni� � 	0; pni; 0
T (7)

This flux is also used for the symmetry type of boundaries.
The residual of each node is defined as the sum of the numerical

fluxes; that is,

r i �
XNi
i�1

�̂ij ��bc
i

If one introduces the conservative variables vector U�
	u1;u2; . . . ;uN 
T and the residual vector R� 	r1; r2; . . . ; rN 
T , it is
then possible to write Eq. (3) in the more compact form:

D
dU

dt
�R� 0 (8)

where D is a diagonal matrix containing the control volumes.

III. Discrete Adjoint for the MUSCL Scheme

The discrete adjoint method [15] computes the sensitivity of a
functional J with respect to a generic parameter � as

dJ

d�
� @J
@�
��T

J

@R

@�
(9)

where the vector�J contains the adjoint variables, which are found
by the solution of the adjoint equation:
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@RT

@U
�J �

@JT

@U
(10)

The practical implementation of the transposed Jacobian represents a
major difficulty of the method, especially if one is interested directly
in the computation of the matrix-vector products 	@R=@U
T�J,
which is the case in the present work. At least for 3D applications, the
computation of the matrix only, with subsequent transposition, may
be too demanding in terms of memory.

A. Exact and Approximate Discrete Adjoint

An exact discrete adjoint for the 2D Euler equations has been
implemented previously [9]. The terms appearing in the adjoint
equation were derived exactly; that is, no approximations were made
in the differentiation. Exactness was demonstrated indirectly,
employing the differentiated Jacobian in Newton iterations. The
iterations converged quadratically. This is known to be possible only
when the Jacobian is exact.

However, the exact differentiation of the code requires a lot of
human work. The question arose whether all the different
contributions to the differentiation were necessary to obtain an
effective code. For this reason, an investigation was carried out [9] to
assess the effect of simplifying approximations. Rather than looking
at the error generated in the sensitivity [see Eq. (9)], the effect was
considered directly on the results obtained for some optimization test
cases. The cases involved subsonic as well as supersonic flows and
were driven by two different optimization algorithms. From the
optimization results, it appeared that some approximations produce
effective code. In fact, results obtained using these approximations in
the code were comparable with those of the exact adjoint code.
Similar results have been found by other authors [16].

The approximations were incorporated in the 3D adjoint code
presented here to ease the development phase and to produce the
simplest possible code. They consist of neglecting the Jacobian in the
differentiation of the numerical fluxes of Eqs. (5) and (6); that is,

@�ij

@ui
� 1

2
�A�ui;nij� � jA�urij;nij�j�

@�ij

@uj
� 1

2
�A�uj;nij� � jA�urij;nij�j�

(11)

for the Roe flux and

@�1i
@ui

�A��ui;ni� (12)

for the numerical boundary flux. Also, the limiter in the
reconstruction of Eq. (4) is considered as constant in the
differentiation (i.e., @v̂i=@�i � 0).

B. Derivation of the Discrete Adjoint

To derive a convenient expression for the (transposed) Jacobian, it
is useful to introduce some vectors: the vector of second-order fluxes

H� 	�̂1; �̂2; . . . ; �̂E
T ; the vector of reconstructed left states
UL � 	ûL1; ûL2; . . . ; ûLE
T ; the vector of reconstructed right states
UR � 	ûR1; ûR2; . . . ; ûRE
T ; and the vector of primitive variables
gradient G� 	rv1;rv2; . . . ;rvN 
T . The first three vectors have
length E and the gradient has lengthN, equal to the number of edges
and nodes in the mesh, respectively.

For the MUSCL-scheme described in the previous section, the
dependency of the residual vector upon the conservative variables
can be indicated in abstract form as

R �R	H�UL	U;G�U�
;UR	U;G�U�
�
 (13)

where the dependence of the reconstructed states on the limiters was
neglected according to the approximation described earlier. By
means of chain rule, transposition, and rearrangement of some terms,
the left-hand side of Eq. (10) can be expressed as

@RT

@U
�J � P1�J �

@GT

@U
P2�J (14)

where the matrices P1 and P2 are defined as

P 1 �
�
@UT

L

@U

@HT

@UL

� @U
T
R

@U

@HT

@UR

�
@RT

@H

P2 �
�
@UT

L

@G

@HT

@UL

� @U
T
R

@G

@HT

@UR

�
@RT

@H

(15)

Before discussing the assembly of Eq. (14), a description of the
preceding matrices is necessary. The matrices P1 and P2 are sparse.
The gradient operator @G=@U is also sparse, with a sparsity pattern
that corresponds to the graph of the mesh. Specifically,

1)Matrix @R=@H is of sizeE � N. Thus, 	@R=@H
T�J is a vector
of length E. Each element of this vector, which can be thought to
correspond to an edge of themesh, represents the difference between
the adjoint variables of the two nodes of the edge. For example, for
the edge that connects the nodes i and j, the corresponding element of
the vector has the value �Ji ��Ji.

2) Diagonal matrices @H=@UL and @H=@UR are of size E � E.
They represent the differentiation of the numerical flux formulation.
For the line corresponding to the edge ij, the numerical flux

Jacobians @�̂ij=@ûi are the elements of @H=@UL, and @�̂ij=@ûj are
the elements of @H=@UR. When the node i is lying on the boundary,
the numerical boundary fluxes @�bc

i =@ui are also present. The same
holds for node j. As the hat on the numerical flux Jacobian indicates,
in the case of second-order accuracy these fluxes are evaluated with
reconstructed variables ûi and ûj.

3)Matrices @UL=@U and @UR=@U are of sizeN � E. The elements
of @UL=@U are @ûi=@ui. Introducing the transformation matrix
between conservative and primitive variables, one has

@ûi
@ui
� @ûi
@v̂i

@v̂i
@vi

@vi
@ui

The middle matrix is the identity because for each reconstructed
primitive variable, @v̂i=@vi � 1 [see Eq. (4)]. Therefore, one is left
with the product of the transformation matrix evaluated with v̂i and
its inverse evaluatedwith vi. Note that this productwould result in the
identity only in the case of first-order spatial accuracy (i.e., v̂i � vi).
The elements of @UR=@U are simply obtained by exchanging the i
with the j.

4) Matrices @UL=@G and @UR=@G are of size N � E for each
component of the gradientG. Thesematrices, together with @UL=@U
and @UR=@U, represent the differentiation of the reconstruction
formulation [i.e., the MUSCL-like reconstruction of Eq. (4)]. The
elements of the left matrix are @ûi=@rvi. Introducing the
transformation matrix, one has

@ûi
@rvi

� @ûi
@v̂i

@v̂i
@rvi

As can be seen from Eq. (4),

@v̂i
@rvi

�
�i�xij

2

In the case of @UR=@G, i is exchanged with j and

@v̂j
@rvj

�
��j�xij

2

5) The differentiation of the gradient formulation [9] is @G=@U. If
transposition is not applied, then the differentiated gradient routine
would take a vector as input and give a multicomponent vector as
output. Clearly, the number of components must be equal to that of
the gradient (i.e., equal to the number of space dimensions). When
transposition is applied, the situation is inverted. Therefore, the
differentiated gradient routine has to take amulticomponent vector as
input and give a vector as output. In practice, the derivation of the

CARPENTIERI, KOREN, AND VAN TOOREN 239



gradient operator is much less intuitive than that of the previously
described operators.

Note that as already mentioned, the Roe Jacobians of Eq. (11) are
evaluated with reconstructed variables. It means that these Jacobians
are different from the ones required by an implicit solution scheme
(see Sec. IV). The latter, in fact, requires these Jacobians to be
evaluated with averaged variables (i.e., first-order Jacobian). It
means that for reconstruction schemes, the Jacobians available from
the implicit solution scheme cannot be reused to assemble the
adjoint. However, in the case of an artificial dissipation scheme, the
reuse of the Jacobians would be possible [8].

C. Two-Pass Matrix-Free Assembly

The aforementioned matrices, which are very useful for
explanatory reasons, are not formed at all. The assembly is, in fact,
completely matrix-free; that is, the elements of the matrices are
computed on-the-fly every time the assembly has to be performed.
The matrix-free assembly reflects the need to keep the memory
requirements to the same level as that of the flow solver. Especially
with an implicit solution scheme, as the one used in this work,
additional storage of the matrices may not be affordable.

The matrix-vector product in Eq. (14) is carried out in two steps:
1) First, the differentiated residual routine is run, which computes

the two vectorsP1�J andP2�J, given the adjoint vector�J as input.
Note that in the case of first-order spatial accuracy only the vector
P1�J needs to be computed. The multicomponent vector P2�J can
be thought of as a kind of gradient that, due to the transposition, is an
output, rather than an input, of the differentiated residual routine;

2) OnceP1�J andP2�J are computed, the differentiated gradient
routine is run. The routine takes the multicomponent vector P2�J as
input and gives the vector 	@G=@UT 
P2�J as output, which is added
to P1�J, thus completing the assembly.

In previous work [9], for the 2D Euler equations, the dependency
of the states upon the gradients was not made explicit, as in this case.
The result was that a one-pass assembly was derived directly. Such
an assembly allows an easy inclusion of the differentiation of the
limiters. However, it requires additional data structure and storage,
making the assembly not efficient in terms of both memory and
operations. For the 3D case, the two-pass assembly presented here
seems more suitable because it uses the same data structure of the
flow solver and avoids extra storage.

D. Verification of the Adjoint Implementation

There is a systematic way of verifying the correctness of the
transposed Jacobians [15]. It is known that the relation VTMU�
UTMTV holds for the two vectors V and U and for the matrix M.
Therefore, each routine of the code is differentiated in two versions:
one applying the Jacobian and the other one applying the transposed
Jacobian. In the present work, after the accuracy of the Jacobianswas
verified, it was checked that each routine satisfies the preceding
relation up to machine accuracy.

The accuracy of the Jacobians is verified easily. For most of the
Jacobians that appear in Eq. (15), analytical expressions for their
elements are already available from the flow solver or exist in the
literature. The gradient Jacobian can also be verified easily because
this operator is a linear function of the variables [i.e., G�V��
�@G=@V�V]. Finite differences, although not exact, are also used to
check the Jacobians.

Finally, the accuracy of the computed adjoint sensitivity is verified
against that obtained by the linearized model, for which the
sensitivity and the equations to solve are, respectively,

@R

@U

dU

d�
�� @R

@�
;

dJ

d�
� @J
@�
� @J

@U

dU

d�
(16)

where @U=@� is the flow sensitivity. The linearized equation is
solved with a procedure similar to that for the adjoint equation. At
convergence, it is verified that the two sensitivities agree up to
machine precision.

IV. Time Marching of Flow and Adjoint Equations

Both the flow and the adjoint equations are advanced in time using
an implicit time-stepping scheme. The scheme is essentially the same
for both solvers. At each time step, a system of linear equations
arises, which is solved iteratively to the required level of accuracy.

A. Implicit Pseudo-Time-Stepping Method

An implicit pseudo-time-stepping method is used to solve the
semidiscrete system in Eq. (8). Formally, the method is a defect-
correction [17] approach in pseudotime. In practice, some algebra
shows that it coincides with an Euler scheme that uses an
approximate residual Jacobian [18].

The time derivative in Eq. (8) is discretized using a forward
approximation:

D

�
dU

dt

�
�Dt�Un�1 � Un�

where the diagonal matrix Dt contains the control volumes divided

by their local time steps, Vi=�ti. The residual ~R of a low-order
discretization is introduced. According to the defect-correction
approach, a solution to Eq. (8) is found iteratively as

D t�Un�1 � Un� � ~R�Un�1� � ~R�Un� �R�Un� (17)

where the low-order residual terms vanish once the solution is
converged. If the low-order residual is expanded linearly,

~R�Un�1� � ~R�Un� � @ ~R

@Un
�Un�1 � Un�

and substituted into Eq. (17), one obtains

�
Dt �

@ ~R

@U

�
n

�Un�1 � Un� � �Rn (18)

In the present work, the Jacobian @ ~R=@U is first-order accurate
because the reconstruction contribution is neglected, and it is
approximate because the Jacobians are frozen in the differentiation of
the numericalfluxes, as in Eqs. (5) and (6). At each iteration, the local
time steps�ti are computed using a CFL-number update of the type

CFL n � �CFLn�1 L2�Rn�2�
L2�Rn�1� (19)

whereL2�R� is a discrete norm of the residual vector and� a suitable
parameter.

The same solution scheme is used for the adjoint of Eq. (10) in
spite of the linearity of this system of equations. Hence, the problem
is treated as a nonlinear one. The reason for adopting this solution
procedure is that the off-diagonal contribution arising from the
reconstruction contribution, 	@G=@UT 
P2, makes the matrix in
Eq. (10) poorly diagonally dominant. The consequence is that
attempts to solve the system by means of an iterative linear solver
may result in the solution failing to converge.

Applying the implicit pseudo-time-stepping method described
earlier to the adjoint system of Eq. (10) gives

�
Dt �

@ ~R

@U

�
n�
�n�1
J ��n

J

�
��

�
@RT

@U
�n
J �

@JT

@U

�
(20)

This nonlinear solution procedure results in a robust solver because it
shifts the poorly diagonally dominantmatrix to the right-hand side of
the equation and uses a diagonally dominant matrix at the left-hand
side to drive the solution process.

Constrained shape optimization problems may require Eq. (20) to
be solved asmany times as the number of functionals; that is, one has
to compute the adjoint �J of each functional J. The matrix terms
appearing on the right-hand side of Eq. (20) are expensive to
compute. However, because they are identical for all functionals, it
makes sense to performmorematrix-vector products simultaneously
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once these terms are available. In practice, each time the assembly in
Eq. (14) is performed, different adjoints are assembled together.

A similar reasoning is also valid for the left-hand side of Eq. (20).
However, the benefit that has to be expected for this part depends on
whether the linear system procedure stores the matrix. This aspect is
clarified later. In general, numerical experiments show that
simultaneous time stepping gives appreciable time savings
compared with the sequential solution.

B. Linear System of Equations

At each time step, Eq. (18) implies the solution of a linear system
Mz� b, where

M �
�
Dt �

@ ~R

@U

�
n

; z� Un�1 � Un; b��Rn (21)

A simple iterative procedure is employed that computes corrections
of the type

z k�1 � zk ��z; �z� P�1M Rk
L; Rk

L � b �Mzk (22)

where RL is the residual of the linear system, and PM the
preconditioner computed fromM. The procedure is iterated until the
discrete norm of the linear residual is less than a fraction of that of the
nonlinear residual; that is

L2

�
Rk
L

�

 cL2�Rn� (23)

Numerical experiments show that c� 0:1 is a safe value for
obtaining convergence, although for some conditions a lower value
may be needed. In general, for c� 0:1, the average number of
iterations that are needed at each pseudotime step is k� 4–8. Very
low values of tolerance are not useful because no improvement in the
convergence rate can be expected due to the approximations in the
Jacobian.

For the adjoint equation, whereM, z, and b are defined according
to Eq. (20), the procedure is essentially the same. If storage is allowed
(described later), then there are savings in terms of operations, due to
the fact that the matrixM and its preconditioner PM only need to be
computed at the first nonlinear iteration. In fact, these matrices are
dependent on the conservative variables and not on the adjoint
variables.

C. Preconditioning

The preconditioner should be a good approximation of the original
matrix (PM �M) and, moreover, it should be relatively simple to
invert. A symmetric Gauss–Seidel preconditioner was implemented,
which can be expressed as

PM � �DM �LM�D�1M �DM � UM� (24)

This preconditioner can be inverted by means of a forward solve
followed by a backward solve. To perform the sweeps, a distance-1
topology is needed; that is, for each node, stencilN i, which contains
the node i and all its distance-1 neighbors, must be available. These
data are all that is needed to perform the sweeps, because for a first-
order Jacobian each edge produces four nonzero entries: two on the
diagonal and two off-diagonal [18]. Therefore, the nonzero entries
for each node (a Jacobian row) are only the nodes in the stencil.

The forward solve �DM �LM��z� �Rk
L is performed with the

first sweep on the nodes:

�z�i �D�1Mi

�
Rk
Li �

X
j2Li

LMij
�z�j

�
; �i� 1; N� (25)

whereas the backward solve �I�D�1M UM��z��z� is performed
with the second sweep on the nodes:

�zi ��z�i � D�1Mi

X
j2U i

UMij
�zj; �i� N; 1� (26)

Li andU i are subsets of the stencilN i (8 j 2 Li: j < i and8 j 2 U i:
j > i). The elements of DM, LM, and UM are

DMi
� Vi

�ti
I�

XNi
j�1

@�ij

@ui
� @�

bc
i

@ui

LMij
��

@�ij

@ui
; UMij

�
@�ij

@uj

(27)

where the boundary flux Jacobian is only present when the node i is
lying on the boundary.

For the adjoint solution, for which the elements of the
preconditioner are transposed, the matrices DT

Mi
, LT

Mij
, and UT

Mij
are

employed. Moreover, UT
Mij

should be used in Eq. (25) instead of

Eq. (26) and vice versa. In the case ofmultiple right-hand sides, there
are a number of linear residuals that must be preconditioned, one for
each functional J. For instance, consider Eq. (25). There, �z�i is
computed given RLi

for each functional, with D�TMi
and UT

Mij
being

equal for all functionals. This practice consists of simultaneously
solving several linear systems that have the same matrix in common.

D. Storage vs the Matrix-Free Approach

Storage of the matrixM and of its preconditioner PM is beneficial
in terms of CPU time. However, depending on the size of the mesh,
the amount of memory involved may be excessive. The
preconditioning strategy implemented in this work has the feature
of not requiring any preparatory work for the preconditioner. In fact,
as shown in Eqs. (25) and (26), only the inversion of the diagonal
submatrices is required. Consequently, there is no need to store both
the matrix and the preconditioner. It is enough to store onlyDM,LM,
andUM, thus halving the storage. With these elements available one
can 1) perform the matrix-vector product to compute the linear
residual [see Eq. (22)] and 2) apply the preconditioner to the latter
[see Eqs. (25) and (26)]. In practice, DM, LM, and UM are
precomputed and stored at each nonlinear iteration, at least for the
flow equations. In fact, as already mentioned, the adjoint solution
only requires them to be computed once.

The approach just described can be referred to as the storage
approach. In contrast, there is a matrix-free approach, which can be
applied in this case because the preconditioner does not require
preparatory work. Looking at the definition of the lower and the
upper matrices [see Eq. (27)], one understands that the sweeps of
Eqs. (25) and (26) only requireDM to be stored and allowLM andUM

to be computed on-the-fly. Also, for the matrix-vector product that is
required to compute the linear system residualRL [see Eq. (22)], the
elements can be computed on-the-fly. The matrix-free approach is
very beneficial in terms of memory because it requires an amount of
storage similar to that of an explicit scheme. However, recomputing
LM and UM on-the-fly gives a penalty in terms of CPU time.

V. Numerical Results

Two configurations are considered: the ONERA-M6 wing [19]
and the DLR-F6 wing–body [20]. The unstructured meshes of
tetrahedral elements used for the computations are depicted in Figs. 1
and 2, respectively. The pressure coefficients obtained by the present
solver are compared with those obtained by FOI’s Edge [21] flow
solver on the same meshes. The Edge flow solver is an unstructured
solver based upon an artificial dissipation scheme.§ The comparison
is shown inFigs. 3 and 4.Comparison of the pressure coefficients and
other quantities at different spanwise sections can be found in the
technical report that describes the present flow solver in more detail
[22].

Figure 5 shows the convergence histories of the flow, linearized,
and adjoint solvers for the ONERA-M6 wing. These are represented
in terms of nonlinear iterations. As can be seen from Fig. 5a, the
scaled residual of the flow solver, which is defined as

§Documentation available online at http://www.foi.se/edge [retrieved
23 October 2007].
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L2�Rn�=L2�R0�, is reduced by 10 orders of magnitude. The lift
coefficient (see Fig. 5c) is fully converged at less than half of the total
number of iterations. In terms of linear iterations (see Fig. 5b), an
average of six of these are required for each nonlinear iteration. A
maximum of 11 linear iterations is required around the 30th
nonlinear iteration. In general, especially for 3D computations, the
startup phase of the implicit solution procedure appears to be a
critical one. A safe choice of the solution parameters has to be made
to obtain convergence. For instance, the parameter� in Eq. (19) is set
equal to 1–2, whereas in 2D computations it can be safely set to
values that are 10 times larger.

Fig. 1 Wing configuration: a) ONERA-M6 wing and b) unstructured mesh around the wing.

Fig. 2 Wing–body configuration: a) DLR-F6 wing–body and b) unstructured mesh around the wing–body.

Fig. 3 ONERA-M6 wing atM1 � 0:84 and �� 3:06deg; contours of
the pressure coefficient obtained by the present solver (right) and by the
Edge solver (left).

Fig. 4 DLR-F6 at M1 � 0:75 and �� 0:5deg; contours of the

pressure coefficient obtained by the present solver (right) and by the

Edge solver (left).

242 CARPENTIERI, KOREN, AND VAN TOOREN



Convergence histories of the flow and the adjoint solvers for the
two configurations are shown in Figs. 6 and 7, respectively. To
compare the efficiency of the adjoint solver with that of the flow
solver, these convergence histories are plotted in terms of CPU time.
For the convergence histories of Figs. 6a and 7a, the elements LM,
UM, and DM of the matrixM were stored. It appears that the adjoint
solver residual overlaps with the flow solver residual; that is, one
adjoint solution requires the same amount of time as one flow
solution. This positive result can be explained as follows. The larger
amount of CPU time required to assemble the right-hand side of
Eq. (20), compared with Eq. (18), is cancelled out by the time saved
on the left-hand side for the computation of the matrix elements. In
fact, as already mentioned, these elements for the adjoint are
computed only once. In the case of multiple adjoint solutions,
looking at these pictures, it appears that the simultaneous solution of

two adjoints saves 25% of CPU time compared with two sequential
solutions. In the case of three adjoint solutions, the CPU time saving
rises to 33%.

The convergence histories of Figs. 6b and 7bwere produced using
the matrix-free option; that is,LM and UM are always computed on-
the-fly for both matrix-vector products and preconditioning. Clearly,
there is a penalty in terms of time. As can be seen, the CPU time
required to converge the flow is around three times more than in the
storage case of Figs. 6a and 7a. A single adjoint solution required in
this case around 10%more CPU time than the flow solution. In fact,
for the adjoint solution, on-the-fly computation means that the
advantage of having the same LM and UM for all iterations is lost in
this case. Nevertheless, on-the-fly computations allow maximal
exploitation of the advantages given by simultaneous adjoint
solutions. As can be seen from Figs. 6b and 7b, two simultaneous
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Fig. 5 ONERA-M6wing convergence histories of the flow, adjoint, and linearized solvers: a) residual, b) linear vs nonlinear iterations, c) lift coefficient,

d) lift sensitivity, e) drag sensitivity, and f) pitching-moment sensitivity.
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adjoint solutions give around 45% time savings compared with
sequential solutions. In the case of three adjoint solutions, the time
saving rises to 60%.

In terms of memory requirements, the adjoint requires an amount
of memory that is of the same order as that required by the flow
solver. Figure 8 shows these requirements for storage andmatrix-free
computations. Because the picture is valid for both configurations,
thememory is normalized by thememory required by theflow solver
formatrix-free computations.As can be seen, theflow solver requires
2.7 times more memory when the matrix elements are stored than in
the case of matrix-free computations. When the matrix elements are
stored, the adjoint takes only 11%morememory than theflow solver.
This memory increase rises to 40% in the case of three simultaneous
adjoint solutions. In the case of matrix-free computations, the
difference in memory use between the flow solver and the adjoint
solver is clearly larger. For instance, three adjoints simultaneously
require slightlymore than two times thememory required by theflow
solver.

The adjoint solver was verified using the linearized solver, which
was implemented according to Eq. (16). As already mentioned,
Fig. 5a shows the residual history of the three solvers in terms of
nonlinear iterations. As can be seen, the solvers converge at the same
rate. When the solution stabilizes itself, the average number of linear
iterations (see Fig. 5b) appears to be the same for the three solvers.
Compared with the flow solver, the adjoint solver requires more
iterations in the startup phase, whereas the linearized solver requires
less. The convergence history for the lift, drag, and pitching-moment
sensitivities are shown inFigs. 5d–5f , respectively.Only thefirst 100
nonlinear iterations are shown. As can be seen, the sensitivities
computed with the linearized and the adjoint solvers converge
exactly to the same value. These sensitivity values have also been
compared with values obtained by finite differences, with a suitable
increment of 10�6. It turned out that the lift sensitivity differs 0.87%,
the drag sensitivity differs 0.27%, and the pitching-moment
sensitivity differs 2%.

VI. Conclusions

The discrete adjoint of an unstructured finite volume solver for the
three-dimensional Euler equations was developed and implemented.
An efficient two-pass assembly for a MUSCL-like reconstruction
scheme was presented. The assembly uses the same data structure as
the flow solver and is completely matrix-free.

An implicit solution scheme for the flow equations was tailored to
the adjoint equations. The scheme is a defect-correction iteration that
uses symmetric Gauss–Seidel preconditioning and features the
possibility to store thematrices or to run completely matrix-free. The
adjoint solver, in case of both storage and matrix-free solutions, was
shown to require almost the same CPU time and memory as the flow
solver.
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Fig. 6 ONERA-M6 wing flow and adjoint convergence histories: a) storage of the preconditioner and b) matrix-free preconditioning.
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Fig. 7 DLR-F6 wing–body flow and adjoint convergence histories: a) storage of the preconditioner and b) matrix-free preconditioning.
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To compute the sensitivity of more functionals simultaneously,
the solution scheme was modified to solve the equations for multiple
right-hand sides. Solving up to three adjoint equations
simultaneously was shown to give appreciable time savings
compared with sequential solutions.
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